Rocks Roads Ripples N'At: 

Pittsburgh's Civil Engineering News Blog

Predicting Geotechnical Drilled Shaft Capacity: Are We Close?

26 Sep 2017 9:24 PM | ASCE Blog Editor (Administrator)

Article from DFI Deep Foundations

Recently modified design equations used in the transportation industry to calculate side friction and end bearing capacity for drilled shafts are now providing more realistic estimations of capacities than did previous methods. Using multiple case studies and test results from various projects, a more realistic design approach was formulated by the Federal Highway Administration (FHWA), which resulted in greater values of ultimate capacity for side friction and end bearing and in a more efficient design overall.

In 2010, the FHWA published GEC-10 – Drilled Shafts: Construction Procedures and LRFD Design Methods, which illustrates a different method of calculating side friction and end bearing resistance and results in greater values for design. In 2014, the Association of State Highway and Transportation Officials (AASHTO) adopted the method put forth by FHWA, which was included in its LRFD Bridge Design Specifications, 7 Edition. The Pennsylvania Department of Transportation (PennDOT) recently adopted and incorporated the similar methodology as AASHTO for calculating side friction and end bearing for drilled shafts in rock, and these changes are reflected in the 2015 edition of the PennDOT Design Manual, Part 4 (DM-4). This article discusses the past and current design methodology along with a project case study with results from Osterberg Cell (O-cell) load testing, which presents a comparison between the design resistances of ultimate side friction and end bearing and the measured capacities at failure.

Read full article here.


Sponsored By

 
 © ASCE Pittsburgh Section. All Rights Reserved.
Powered by Wild Apricot Membership Software